Subspacing Based on Connected Opening Spaces and for Different Locomotion Types Using Geometric and Graph Based Representation in Multilayered Space-event Model (mlsem)
نویسندگان
چکیده
Indoor navigation has to deal with more issues as compared to outdoor navigation. Those issues include but are not limited to; need more level of detail to process enclosing area around navigating subject or object, consideration of the context of navigation (about locomotion type and its operating environment), and dealing with unconstrained indoor space for accurate results. Because of these complex issues, most of the frameworks for indoor navigation support for only one single type of locomotion, i.e. either walking, driving, or flying. And this decision to select a specific type of locomotion results in restricting the use of representation of indoor space for other types of locomotion e.g. graph-based abstraction of indoor space for driving cannot be used for flying. In this work, we addressed the problem of supporting different types of locomotion in indoor space by determining 3D navigable subspace for the given locomotion type based on its physical constraints. While determining 3D subspace, we focused on some issues that include indoor space representation, precision of subspace computation, and “the consideration of the context of navigation” (about indoor space and the locomotion type). To achieve better representation of indoor space, the subspaces are determined based on the connected opening spaces. And for precise subspace computation according to the given locomotion type, we used the geometric methods i.e. configuration space from robotics field. Furthermore, a semantically enriched 3D indoor virtual model in CityGML format and different locomotion types (flying, driving, and walking) containing information (semantics, geometry, and topology) were considered to examine the context of navigation. Last but not least, the subspacing procedure was presented and implemented in a sound mathematical framework i.e. Multilayered Space-Event Model (MLSEM) as proposed by Becker, Nagel, and Kolbe in 2008 and 2009.
منابع مشابه
designing and implementing a 3D indoor navigation web application
During the recent years, the need arises for indoor navigation systems for guidance of a client in natural hazards and fire, due to the fact that human settlements have been complicating. This research paper aims to design and implement a visual indoor navigation web application. The designed system processes CityGML data model automatically and then, extracts semantic, topologic and geometric...
متن کاملdominating subset and representation graph on topological spaces
Let a topological space. An intersection graph on a topological space , which denoted by , is an undirected graph which whose vertices are open subsets of and two vertices are adjacent if the intersection of them are nonempty. In this paper, the relation between topological properties of and graph properties of are investigated. Also some classifications and representations for the graph ...
متن کاملGenerating an Indoor space routing graph using semantic-geometric method
The development of indoor Location-Based Services faces various challenges that one of which is the method of generating indoor routing graph. Due to the weaknesses of purely geometric methods for generating indoor routing graphs, a semantic-geometric method is proposed to cover the existing gaps in combining the semantic and geometric methods in this study. The proposed method uses the CityGML...
متن کاملTarget detection Bridge Modelling using Point Cloud Segmentation Obtained from Photogrameric UAV
In recent years, great efforts have been made to generate 3D models of urban structures in photogrammetry and remote sensing. 3D reconstruction of the bridge, as one of the most important urban structures in transportation systems, has been neglected because of its geometric and structural complexity. Due to the UAV technology development in spatial data acquisition, in this study, the point cl...
متن کاملSpatial Analysis in curved spaces with Non-Euclidean Geometry
The ultimate goal of spatial information, both as part of technology and as science, is to answer questions and issues related to space, place, and location. Therefore, geometry is widely used for description, storage, and analysis. Undoubtedly, one of the most essential features of spatial information is geometric features, and one of the most obvious types of analysis is the geometric type an...
متن کامل